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Abstract The Privman-Fisher universal amplitude, characrerizing the free energy of a finite 
sized system at its critical point, is identified as the critical counterpart of the 'number of stable 
phases' on the coexistence curve. Its value is shown to be determined by the critical-point form 
of the order parameter disuibution, directly accessible to Monte Carlo studies. 

Finite-size scaling [1,2] is an established branch of the theory of phase transitions, of 
interest in its own right, and essential to the understanding and effective use of Monte Carlo 
(MC) studies. The literature devoted to this topic is extensive [3]. The specific concern 
of the present work is the prediction [4] that the (Gibbs) free energy density of a critical 
system, of volume V = Ld, contains a contribution of the form Uo/Ld with U0 a constant, 
unique to a universality class, but dependent on sample geometry and boundary conditions. 
This prediction finds justification in the theory of conformal-invariance [5] which permits 
the evaluation of the coefficient U0 in some cases, as do extended scaling arguments [6]. 
The determination of free energies by MC methods is notoriously awkward, but some MC 
results for U. exist [7]. The results presented here illuminate the physical significance of 
this quantity, and show that it is available directly to conventional MC sampling studies 
at criticality. In particular we show that U0 is a measure of the additional configuration 
space accessible to a system, at its critical temperature, in the limit of sufficiently small 
ordering fields; it can be viewed as the critical counterpart of the number of stable phases 
chqacterizing the associated coexistence curve [S,  91. The analysis also casts some light on 
the general structure of the critical probability distribution of the order parameter, which has 
proved an increasingly useful focus of interest in MC studies of critical behaviour [10-15]. 

We consider a system in the form of a d-dimensional cube of side L, with periodic 
boundary conditions. We suppose that the system exhibits a continuous phase transition, 
associated with a scalar order parameter m, with conjugate field h, such that the phase 
coexistence boundary lies along the line h = 0. We denote by Z ( L ,  h ,  t )  the partition 
function at reduced temperature t = (T - TJ/Tc.  The focus of our interest is an anomalous 
contribution to the configurational weight, featuring as an L-independent multiplicative 
prefactor in this partition function. More formally, defining a dimensionless free energy by 
F E '-In Z, the quantity of interest is the free energy anomaly 

The critical-point value of this anomaly defines the Privman-Fisher coefficient [4] through 
U0 F,(h = 0, t = 0). Its singular behaviour (for E = E- < 0) at h = 0 identifies the line 
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of coexistence, with N,(h = 0, t - )  = exp [-F,(h = 0, t - ) ]  giving the number of phases 
coexisting at h = 0 [8,9]. 

To provide a common framework for understanding and evaluating these quantities we 
note that the field-dependence of the partition function is expressible in the form 

(W Z ( L ,  h ,  t )  = Z ( L ,  0, t ) Z ( L ,  h, t) 
with 

2 ( L ,  h, t )  E s dm pL.t(m)ehmLd (2b) 

where pL.r(m) is the zero-field probability density (PDF) of the order parameter. It follows 
that 

F ( L ,  0, t )  = F(L, h, t )  +F(L,  h, t )  

F ( L ,  h, t )  In [/dm p~,,(m)e""~"] 

(34 
with 

(36) 

We analyse these equations on the assumption that the Borgs-Kotecky result Fa(h, t )  = 
0 for h # 0, rigorously established for sufficiently low temperatures, holds for all t .  Then, 
appealing to equations (1) and (34, 

(44 Fa(h = 0, t )  = Fa(ho, t )  + Fa(ho9 t )  Fa(ho7 t) 
with 

1 
L-m L-m Ld Fa(ho, f) = lim F ( L ,  ho, t )  - Ld lim - F ( L ,  ho, f )  

while ha is any non-zero field. 
First, we briefly consider this result in the case f = t- with E- < 0. In this regime, 

in the limit of large L (specifically, in the limit in which L is Iarge compared with the 
correlation length $), the h = 0 order parameter dishibution is the sum of two Gaussians 
(see, e.g., [16]): 

where m, = lim~,olimr,,(m)~,h,,. is the equilibrium order parameter and m, is defined 
by m i  = (mz)L.h=O,t - m: and satisfies m: = L-dx with x the zero-field susceptibility. It 
then follows from equation (3bj that 

from which (using (44, (48)) one readily finds Fa(h = 0, t-) = Fa(ho, t-)  = -In 2, 
capturing the result N,(h = 0, i-) = exp [-F,(h = 0, t - ) ]  = 2. 

Now consider the case t = 0 (the critical temperature of the bulk system). It is well 
established [17,11,131 that, for L large compared to microscopic lengths, pL,r=o(m)dm rr 
p'(x)dx with x = m/m, and m, = (mz)~/.~=o,I=o L-d/(1+6), where 6 is the equation 
of state exponent; the function p'(x) is unique to a universality class, and in general non- 
Gaussian. Appealing to equation (3b) we then find 

3 ( L ,  h,  t = 0) = In dr p'(x)ey" = F ( y )  (7) [S 1 
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with y = hm,Ld. Using equation (44 we may then identify 

with yo = hom,Ld. The limiting~ behaviour of the function P ( y )  is controlled by the large 
x behaviour of p*(x),  for which we make the following ansatz: 

( 9 4  p*(x) N p,x* exp (-a,x'+') 

with 
6-1 *=- 

2 
while pm and a,  are universal constants (implicit in the form of p*). The structure of 
the exponential (equation (94)  is suggested by rigorous results for the 2~ Ising model 1181 
and is consistent with MC studies of the king universality class 1131; the value assigned 
to the exponent of the power law prefactor is proposed here (equation (Sb)), for reasons to 
become apparent. We note that a prefactor of this struchlre features in a recently developed 
theory [ 19,201 which argues that the critical order parameter distribution may be related to 
the stable distributions of probability theory?. 

The integral of interest in equation (7) may be written in the form F ( y )  = 
In[]dx e g ~ ( ~ ) ]  with g,(x) = Inp*(x) + y x .  For sufficiently large y it is dominated by 
a maximum of gy(x) .  at x = xs say. Then 

Solving g$(x,) = 0 for x,, and substituting yields 

where b ,  is a constant. The proposed value for 9 (equation (96)) ensures that the 
coefficients of the two Inx, terms cancel, removing a logarithmic dependence on system size 
that would otherwise result (since x, - y'/'). Recognizing that y;"/' = (hom,, Ld)'+'/' - 
Ld and appealing to equations (8) and (11) we find 

Although this result is illuminating in that it exposes, analytically, the factors controlling 
U,, the value of this amplitude is more reliably determined by direct calculation of the 
function F ( y )  through numerical integration of equation (7), using MC results for p'(x). 
Figure 1 shows results for the 2D Ising universality class obtained using the form of p'(x) 
established in studies of both lattice-based spin models 1131 and ZD fluids [14]. The inset 
shows the function F ( y )  plotted against y'+'/', with the assignment 6 = 15 [21]. The 
convergence to the large-y form indicated by equation (1 1) is apparent, occurring within the 
interval in which hL"/('+') 5 1; the value of U0 is given by extrapolating the limiting linear 
form back to y = 0. The result of this extrapolation depends upon the interval in which 
the 'limiting' linear behaviour is deemed to hold. The main figure shows the result (for 

t However, this theory also suggests the existence of further non-universal contributions to the order parameter 
distribution, falling off as apower a$ &ex and thus asymptotically dominant. Further MC studies of the large-x 
regime are clearly called for. 
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the intercept, and thus the 'effective' UO) obtained by a fining procedure using data lying 
within a window of y-values, as a function of the cenBa1 y-value in that window. There 
is excellent agreement with the value U0 = - ln2 - ln[(Z1I4 + 2-'/*)/2] = -0.639 912 
obtained from exact evaluation of the zero-field partition function of the finite-sized 2D 
king model [22]. Figure 2 shows similar results for the 3D king universality class, with 
the presumption 6 = 4.8 [23], using the form of p * ( x )  established in an independent MC 
study [15,19], employing 5 x IO' MC sweeps of a lanice of size 323 at the critical coupling 
Kc = 0.221 6595 1.231. The limiting behaviour suggested by the inset is to be compared 
with the MC estimates in the range -0.64 to -0.66 obtained in studies of systems up to 
243 [7]. As regards other dimensionalities, one might note that the double-delta function 
form of p'(x) in d = 1 [12] implies U0 = - I n 2  = -0.693.. .; a droplet-model valid 
in d = 1 + E  [24] may be analysed to show that U0 = -ln2[1+0(1/8)]. It is then 
evident that the general closeness of U0 to -In Nc(O, t) reflects the significant vestiges of 
phase coexistence that persist through to the critical point; the amplitude itself measures the 
additional configurational space which becomes available to the system when the ordering 
field is reduced below of order L-ds/cl+n, as the order parameter distribution broadens from 
a Gaussian centred on m = m,x, to the symmetric non-Gaussian form described by p'(x). 
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Figure 2. 
from [IS. 191. 

As figure I ,  bot in the case of the 30 king universality class using PDF data 
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